Understanding the Discriminant

Find the value of the discriminant of each quadratic equation.

1)
$$6p^2 - 2p - 3 = 0$$

2)
$$-2x^2 - x - 1 = 0$$

3)
$$-4m^2 - 4m + 5 = 0$$

4)
$$5b^2 + b - 2 = 0$$

5)
$$r^2 + 5r + 2 = 0$$

6)
$$2p^2 + 5p - 4 = 0$$

Find the discriminant of each quadratic equation then state the number of real and imaginary solutions.

7)
$$9n^2 - 3n - 8 = -10$$

8)
$$-2x^2 - 8x - 14 = -6$$

9)
$$9m^2 + 6m + 6 = 5$$

10)
$$4a^2 = 8a - 4$$

11)
$$-9b^2 = -8b + 8$$

12)
$$-x^2 - 9 = 6x$$

-1-

13)
$$-4r^2 - 4r = 6$$

14)
$$8b^2 - 6b + 3 = 5b^2$$

Find the discriminant then state the number of rational, irrational, and imaginary solutions.

15)
$$-6x^2 - 6 = -7x - 9$$

16)
$$4k^2 + 5k + 4 = -3k$$

17)
$$-7n^2 + 16n = 8n$$

18)
$$2x^2 = 10x + 5$$

19)
$$-10n^2 - 3n - 9 = -2n$$

20)
$$-9r^2 - 8r - 1 = r - r^2 - 9$$

21)
$$-3p^2 + 10p + 5 = -8p^2$$

22)
$$m^2 + 5m = 2m^2$$

Critical thinking questions:

- 23) Write a quadratic equation that has two imaginary solutions.
- 24) In your own words explain why a quadratic equation can't have one imaginary solution.

Understanding the Discriminant

Find the value of the discriminant of each quadratic equation.

1)
$$6p^2 - 2p - 3 = 0$$

76

$$2) -2x^2 - x - 1 = 0$$

-7

3)
$$-4m^2 - 4m + 5 = 0$$

96

4)
$$5b^2 + b - 2 = 0$$

41

5)
$$r^2 + 5r + 2 = 0$$

17

6)
$$2p^2 + 5p - 4 = 0$$

57

Find the discriminant of each quadratic equation then state the number of real and imaginary solutions.

7)
$$9n^2 - 3n - 8 = -10$$

−63; two imaginary solutions

8)
$$-2x^2 - 8x - 14 = -6$$

0; one real solution

9)
$$9m^2 + 6m + 6 = 5$$

0; one real solution

10)
$$4a^2 = 8a - 4$$

0; one real solution

11)
$$-9b^2 = -8b + 8$$

−224; two imaginary solutions

12)
$$-x^2 - 9 = 6x$$

0; one real solution

13)
$$-4r^2 - 4r = 6$$

−80; two imaginary solutions

14)
$$8b^2 - 6b + 3 = 5b^2$$

0; one real solution

Find the discriminant then state the number of rational, irrational, and imaginary solutions.

15)
$$-6x^2 - 6 = -7x - 9$$

121: two rational solutions

16)
$$4k^2 + 5k + 4 = -3k$$

0; one rational solution

17)
$$-7n^2 + 16n = 8n$$

64; two rational solutions

18)
$$2x^2 = 10x + 5$$

140; two irrational solutions

19)
$$-10n^2 - 3n - 9 = -2n$$

−359; two imaginary solutions

20)
$$-9r^2 - 8r - 1 = r - r^2 - 9$$

337; two irrational solutions

21)
$$-3p^2 + 10p + 5 = -8p^2$$

0; one rational solution

22)
$$m^2 + 5m = 2m^2$$

25; two rational solutions

Critical thinking questions:

23) Write a quadratic equation that has two imaginary solutions.

Many answers. Ex: $x^2 + x + 1 = 0$

24) In your own words explain why a quadratic equation can't have one imaginary solution.

Answers vary.

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com